
G macrocanonical ensemble

G.1 Macrocanonical ensemble

Similar to the case of the Gibbs-enthalpy and the extension of the canonical potential
by an additional Boltzmann-like factor exp(pV/(kBT)) one could construct a new
partition with an associated thermodynamical potential for the case where temper-
ature and volume are controlled, but the particle number is allowed to fluctuate
by exchange with a particle reservoir, in analogy to the thermostat regulating the
temperature. The ease at which new particles are added to the system is regulated by
the chemical potential µ, and the resulting ensemble is called k macrocanonical or
grand canonical ensemble.

The combined phase space volume of the two systems is given by

ω∗δE =
∫

E≤H≤E+δE

∏
i

d3pid
3qi =

∫
0≤E1≤E

ω∗1(E1, N1)ω∗2(E − E1, N − N1)dE1δE (G.293)

If the systems are separated, one would put N1 particles in the first system but let
the energy fluctuate such that the temperature is controlled: That would define the
canonical partition.

If now the barrier between the systems is openend there can be an exchange of
particles. There is a number of

N!
N1!(N − N1)!

=
(

N
N1

)
(G.294)

possibilities to select N1 particles from N = N1 + N2 to be in the first system, implying

ω∗(E, N)δE =
∫ ∑

N1

(
N
N1

)
ω∗1(E1, N1)ω∗2(E − E1, N − N1)dE1δE (G.295)

The binomial factor separates magically into exactly the Gibbs-factors that are needed
for each term:

ω∗(E, N)δE
N!h3N =

∑
N1

∫
ω∗1(E1, N1)

N1!h3N1

ω∗2(E − E1, N − N1)

(N − N1)!h3(N−N1)
dE1δE (G.296)

and with the proper definition of Gibbs-corrected phase space volumes, including
the powers of h3N = h3N1 × h3N2 ,

ω(E, N)δE =
∑
N1

∫
ω1(E, N1)ω2(E − E1, N − N1)dE1δE (G.297)

The probability of finding the system in a state characterised by E1 and N1 is then
given by

W(E1, N1)dE1 ∼ ω1(E1, N1)ω2(E − E1, N − N1)dE1 (G.298)

from which we continue as before by expanding the logarithm of ω2 around the
maximum of W
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g. macrocanonical ensemble

lnω2(E − E1, N − N1) = lnω2(E, V) − ∂ω2

∂E︸︷︷︸
= 1

kBT =β

E1 −
∂ lnω2

∂N︸  ︷︷  ︸
= µ

kBT =ln z

N1 (G.299)

from S = kB lnω such that ∂S
∂E = 1

kBT and ∂S
∂N = µ

kBT . With the definition of k fugacity

ln z =
µ

kBT
→ z = exp

(
µ

kBT

)
(G.300)

as the chemical potential in units of the thermal energy in analogy to the inverse
temperature β = 1

kBT we find for the probability

W(E1, N1)dE1 ∼ ω(E1, V1, N1) exp
(
−

E1 − µN
kBT

)
dE1 (G.301)

such that the fugacity plays the role of an analogous Boltzmann-factor to introduce
the replacement of N by µ.

G.2 Macrocanonical potential J and macrocanonical partition Z
The associated thermodynamical potential to the macrocanonical partition Z is the
macrocanonical potential J, naturally as a function of the state variables T, V and µ,
the latter replacing N:

J(T, V, µ) = −kBT lnZ (G.302)

as the logarithm of the macrocanonical partition Z

Z =
∑

N

∫
E

dE ω(E, V, N) exp
(
−

E − µN
kBT

)
(G.303)

Derivatives of the macrocanonical potential J with respect to T, V and µ are then
linked to entropy S, pressure p and particle number N, respectively.

G.3 Chemical potential µ and fugacity z

A fun example for a canonical, discrete system is a microscopic model for a polymer,
i.e. an elastic string: We’ll set up a canonical partition and extend it to a macrocanon-
ical partition in order to get some intuition about the chemical potential and the
associated fugacity. Let’s assume that the string is a chain of N monomers which
can be in two configurations, the long configuration with length a and the short
configuration with length b. The string is kept under tension σ, such that there is
mechanical work σdl performed, if the the length l of the chain is changed, in analogy
to the work performed by pressure pdV.
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g.3. chemical potential µ and fugacity z

As in this system the state variables T, σ and N are controlled, we chose the
enthalpy G(T, σ, N) as the thermodynamical potential, with the associated canonical
partition ZG(T, p, N):

ZG =
∑
i

(
N
i

)
exp

(
−σl(i)
kBT

)
=

∑
i

(
N
i

)
exp

(
− σ

kBT
[ia + (N − i)b]

)
=

[
exp

(
− aσ
kBT

)
+ exp

(
− bσ
kBT

)]N

(G.304)

with a factorising partition sum, ZGT, σ, N = ZG(T, σ, 1)N . Clearly, the length of the
polymer chain l(i) depends on the number i of long elements a and the number N − i
of short elements b. The combinatorial factor

(N
i

)
= N!/ i!/(N − i)! counts the number

of possibilities to distribution i long elements in a chain of N elements in total.
Then, he Gibbs-enthalpy then follows from the canonical partition as

G(T, σ) = −kBT ln ZG = σl − TS (G.305)

with the corresponding differential dG,

dG = −SdT + ldσ (G.306)

such that the length of the chain at fixed tension and temperature is given by

l =
∂G
∂σ

= N
a exp

(
− aσ
kBT

)
+ b exp

(
− bσ
kBT

)
exp

(
− aσ
kBT

)
+ exp

(
− bσ
kBT

) (G.307)

in thermodynamical equilibrium: Immediately, one would interpret eqn. (G.307)
as a weighted sum of N exp(−aσ/(kBT)) monomers in the a-configuration and of
N exp(−bσ/(kBT)) monomers in the b-configuration, to form the expectation value for
the total length l. In complete analogy, differentiation with respect to temperature
yields the entropy, S = −∂G

∂T .
Figs. 16 and 17 show the equation of state, i.e. the relation between tension σ,

length l and temperature T for this model, and compare the analytic solution derived
from ZG with the expectation values of samples drawn from the canonical ensemble
my means of a k Monte-Carlo Markov-chain method, namely, the k Metropolis-
Hastings algorithm. Perhaps a bit surprisingly, the polymer chain in fact contracts at
fixed tension with increasing temperature, as the Boltzmann-probability for replacing
a long monomer with a short one increases. And there is, at least for small tensions,
a linear relationship between length and force reminiscent of k Hooke’s law. Only
for large tensions, when the chain is almost fully elongated, the curve is significantly
steeper, as there are fewer configurations consistent with increasing length.

We can extend the idea of a polymer chain to include a chemical potential µ: The
polymer chain could be in a solution of monomers, which can leave the solution and
be built into the polymer chain, controlled by the parameter µ.
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g. macrocanonical ensemble
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Figure 16: Relation between tension σ and length l of the rubber band, parameterised
by temperature kBT, as it would result from the partition sum ZG and with the most
likely value and its dispersion as determined numerically with a Metropolis-Hastings-
algorithm for sampling from the canonical ensemble (reference: bachelor-thesis M.
Kretschmer)
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Figure 17: Relation between temperature kBT and length l of the rubber band, pa-
rameterised by tension σ, as it would result from the partition sum ZG and with the
most likely value and its dispersion (reference: bachelor-thesis M. Kretschmer)
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g.3. chemical potential µ and fugacity z

For the corresponding macrocanonical partition we need the Gibbs-factor 1
j! , the

canonical partition Z(T, σ, j) now as a function of l and a weighting with fugacity:

Z(T, σ, µ) =
∑
j

1
j!


j∑
i

(
j
i

)
exp

(
−σl(i)
kBT

) exp
(
µj

kBT

)
(G.308)

such that the macrocanonical potential J(T, σ, µ) is given by

J(T, σ, µ) = −kBT lnZ(T, σ, µ) (G.309)

with corresponding derivatives

∂J
∂T

= −S,
∂J
∂l

= −σ, ∂J
∂µ

= −N (G.310)

The canonical partition sum factorises, Z(T, σ, N) = Z(T, σ,1)N into powers of the
canonical partition of a single chain link,

Z(T, σ, 1) = exp
(
− aσ
kBT

)
+ exp

(
− bσ
kBT

)
(G.311)

Collecting all results then yields for the macrocanonical partition

Z(T, σ, µ) =
∑
j

1
j!

Z(T, σ, 1)j exp
(
µ

kBT

)j
=

∑
j

1
j!

[
Z(T, σ, 1) exp

(
µ

kBT

)]j
= exp

(
exp

(
µ

kBT

)
Z(T, σ, 1)

)
(G.312)

where the double exponential is typical for the structure of the macrocanonical
partition sum Z. For this case, S, l and N can be computed by differentiating J =
−kBT lnZ. It is a funny side effect that by providing a high chemical potential µ and
pulling on the string with σ the system assembles the chain spontaneously! There is
an inconsistency though, which does not invalidate the macrocanonical ensemble:
To have a partition function that depends entirely on intensive variables is at odds
with the Gibbs-Duhem relation, which disallows all intensive state variables in the
potential for making statements about extensive state variables, as all information of
the system is lost.

We have seen how the macrocanonical partition is assembled from fugacity-
weighted canonical partitions, but can this process be inverted? It is possible to
recover the canonical partition Z from the macrocanonical partition Z. Their relation
is given by

Z(T, V, µ) =
∑

N

exp
(
µ

kBT

)N

Z(T, V, N) (G.313)

as a fugacity-weighted summation over the canonical partition.
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g. macrocanonical ensemble

In turn, it factorises

Z(T, V, N) =
1

N!
Z(T, V, 1)N (G.314)

into powers over the canonical partition pertaining to a single particle, N = 1.
Introducing the fugacity explicitly,

Z(T, V, z) =
∑

N

Z(T, V, N)zN =
∑

N

1
N!

(z Z(T, V, N))N (G.315)

with z = exp
(
µ

kBT

)
shows that Z is in fact a power series in z with the canonical

partition as prefactors. The variable for the fugacity is already aptly named: When
performing an analytic continuation of Z from real-valued z to complex-valued z,
the series becomes a Laurent series. Then, the canonical partition is obtained through
complex differentiation

Z(T, V, N) =
dN

dzN Z(T, V, z)

∣∣∣∣∣∣
z=0

(G.316)

where the N-fold differentiation can be rewritten as a complex integration around a
loop at z = 0

Z(T, V, N) =
1

2πi

∮
Z(T, V, z)

zN+1 (G.317)

which can be evaluated using the tools of complex analysis, i.e. the residue theorem.
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